2 research outputs found

    A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons

    Get PDF
    With the globally increasing electricity demand, its related uncertainties are on the rise as well. Therefore, a deeper insight of load forecasting techniques for projecting future electricity demands becomes imperative for business entities and policy makers. The electricity demand is governed by a set of different variables or “electricity demand determinants”. These demand determinants depend on forecasting horizons (long term, medium term, and short term), the load aggregation level, climate, and socio-economic activities. In this paper, a review of different electricity demand forecasting methodologies is provided in the context of a group of low and middle income countries. The article presents a comprehensive literature review by tabulating the different demand determinants used in different countries and forecasting the trends and techniques used in these countries. A comparative review of these forecasting methodologies over different time horizons reveals that the time series modeling approach has been extensively used while forecasting for long and medium terms. For short term forecasts, artificial intelligence-based techniques remain prevalent in the literature. Furthermore, a comparative analysis of the demand determinants in these countries indicates a frequent use of determinants like the population, GDP, weather, and load data over different time horizons. Following the analysis, potential research gaps are identified, and recommendations are provided, accordingly

    Systematic Development of Short-Term Load Forecasting Models for the Electric Power Utilities:The Case of Pakistan

    Get PDF
    Load forecasts are fundamental inputs for the reliable and resilient operation of a power system. Globally, researchers endeavor to improve the accuracy of their forecast models. However, lack of studies detailing standardized model development procedures remains a major issue. In this regard, this study advances the knowledge of the systematic development of short-Term load forecast (STLF) models for electric power utilities. The proposed model has been developed by using hourly load (time series) of five years of an electric power utility in Pakistan. Following the investigation of previously developed load forecast models, this study addresses the challenges of STLF by utilizing multiple linear regression, bootstrap aggregated decision trees, and artificial neural networks (ANNs) as mutually competitive forecasting techniques. The study also highlights both rudimentary and advanced elements of data extraction, synthetic weather station development, and the use of elastic nets for feature space development to upscale its reproducibility at global level. Simulations showed the superior forecasting prowess of ANNs over other techniques in terms of mean absolute percentage error (MAPE), root mean squared error (RMSE) and R2 score. Furthermore, an empirical approach has been taken to underline the effects of data recency, climatic events, power cuts, human activities, and public holidays on the model's overall performance. Further analysis of the results showed how climatic variations, causing floods and heavy rainfalls, could prove detrimental for a utility's ability to forecast its load demand in future
    corecore